Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces
نویسندگان
چکیده مقاله:
This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.
منابع مشابه
Multiple Positive Solutions for Singular Periodic Boundary Value Problems of Impulsive Differential Equations in Banach Spaces
and Applied Analysis 3 where f ∈ C J × E × E × E, E , Ik, Ik ∈ C E, E , and the operators T , S are given by Tu t ∫ t 0 k t, s u s ds, Su t ∫2π 0 k1 t, s u s ds, 1.5 with k ∈ C D,R , D { t, s ∈ R2 : 0 ≤ s ≤ t ≤ 2π}, k1 ∈ C J × J,R . By applying the monotone iterative technique and cone theory based on a comparison result, the author obtained an existence theorem of minimal and maximal solutions...
متن کاملMixed Monotone Iterative Technique for Impulsive Periodic Boundary Value Problems in Banach Spaces
This paper deals with the existence of L-quasi-solutions for impulsive periodic boundary value problems in an ordered Banach space E. Under a new concept of upper and lower solutions, a new monotone iterative technique on periodic boundary value problems of impulsive differential equations has been established. Our result improves and extends some relevant results in abstract differential equat...
متن کاملPeriodic boundary value problems for nonlinear impulsive fractional differential equation
In this paper, we investigate the existence and uniqueness of solution of the periodic boundary value problem for nonlinear impulsive fractional differential equation involving Riemann-Liouville fractional derivative by using Banach contraction principle.
متن کاملPositive Solutions for Neumann Boundary Value Problems of Second-Order Impulsive Differential Equations in Banach Spaces
and Applied Analysis 3 To prove our main results, for any h ∈ C J, E , we consider the Neumann boundary value problem NBVP of linear impulsive differential equation in E: −u′′ t Mu t h t , t ∈ J ′, −Δu′|t tk yk, k 1, 2, . . . , m, u′ 0 u′ 1 θ, 2.3 where M > 0, yk ∈ E, k 1, 2, . . . , m. Lemma 2.4. For any h ∈ C J, E , M > 0, and yk ∈ E, k 1, 2, . . . , m, the linear NBVP 2.3 has a unique soluti...
متن کاملMonotone Iterative Technique for the Initial Value Problems of Impulsive Evolution Equations in Ordered Banach Spaces
and Applied Analysis 3 The purpose of this paper is to improve and extend the above mentioned results. We will delete the Lipschitz condition 1.5 for impulsive function Ik and the restriction condition 1.6 and improve condition 1.4 for nonlinear term f . Our main results are as follows. Theorem 1.1. Let E be an ordered Banach space, whose positive cone P is normal, A : D A ⊂ E → E be a closed l...
متن کاملAnti-periodic Boundary Value Problems for Nonlinear Higher Order Impulsive Differential Equations
This paper is concerned with the anti-periodic boundary value problems for nonlinear higher order impulsive differential equations x(t)=f(t, x(t), x′(t), · · · , x(n−1)(t)), t ∈ [0, T ], t = tk, k = 1, · · · , p, ∆x(tk)= Ii,k(x(tk), x′(tk), · · · , x(n−1)(tk)), k = 1, · · · , p, i = 0, · · · , n− 1, x(i)(0)=−x(i)(T ), i = 0, · · · , n− 1. We obtain sufficient conditions for the existence...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 1
صفحات 301- 314
تاریخ انتشار 2017-06-12
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023