Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces

نویسندگان

  • Abdelati El Allaoui Department of Mathematics, Faculty of Sciences and Technics, Sultan Moulay Slimane University, BP 523 Beni Mellal 23000, Morocco
  • Lalla Saadia Chadli Department of Mathematics, Faculty of Sciences and Technics, Sultan Moulay Slimane University, BP 523 Beni Mellal 23000, Morocco
  • Said Melliani Department of Mathematics, Faculty of Sciences and Technics, Sultan Moulay Slimane University, BP 523 Beni Mellal 23000, Morocco
چکیده مقاله:

This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Positive Solutions for Singular Periodic Boundary Value Problems of Impulsive Differential Equations in Banach Spaces

and Applied Analysis 3 where f ∈ C J × E × E × E, E , Ik, Ik ∈ C E, E , and the operators T , S are given by Tu t ∫ t 0 k t, s u s ds, Su t ∫2π 0 k1 t, s u s ds, 1.5 with k ∈ C D,R , D { t, s ∈ R2 : 0 ≤ s ≤ t ≤ 2π}, k1 ∈ C J × J,R . By applying the monotone iterative technique and cone theory based on a comparison result, the author obtained an existence theorem of minimal and maximal solutions...

متن کامل

Mixed Monotone Iterative Technique for Impulsive Periodic Boundary Value Problems in Banach Spaces

This paper deals with the existence of L-quasi-solutions for impulsive periodic boundary value problems in an ordered Banach space E. Under a new concept of upper and lower solutions, a new monotone iterative technique on periodic boundary value problems of impulsive differential equations has been established. Our result improves and extends some relevant results in abstract differential equat...

متن کامل

Periodic boundary value problems for nonlinear impulsive fractional differential equation

In this paper, we investigate the existence and uniqueness of solution of the periodic boundary value problem for nonlinear impulsive fractional differential equation involving Riemann-Liouville fractional derivative by using Banach contraction principle.

متن کامل

Positive Solutions for Neumann Boundary Value Problems of Second-Order Impulsive Differential Equations in Banach Spaces

and Applied Analysis 3 To prove our main results, for any h ∈ C J, E , we consider the Neumann boundary value problem NBVP of linear impulsive differential equation in E: −u′′ t Mu t h t , t ∈ J ′, −Δu′|t tk yk, k 1, 2, . . . , m, u′ 0 u′ 1 θ, 2.3 where M > 0, yk ∈ E, k 1, 2, . . . , m. Lemma 2.4. For any h ∈ C J, E , M > 0, and yk ∈ E, k 1, 2, . . . , m, the linear NBVP 2.3 has a unique soluti...

متن کامل

Monotone Iterative Technique for the Initial Value Problems of Impulsive Evolution Equations in Ordered Banach Spaces

and Applied Analysis 3 The purpose of this paper is to improve and extend the above mentioned results. We will delete the Lipschitz condition 1.5 for impulsive function Ik and the restriction condition 1.6 and improve condition 1.4 for nonlinear term f . Our main results are as follows. Theorem 1.1. Let E be an ordered Banach space, whose positive cone P is normal, A : D A ⊂ E → E be a closed l...

متن کامل

Anti-periodic Boundary Value Problems for Nonlinear Higher Order Impulsive Differential Equations

This paper is concerned with the anti-periodic boundary value problems for nonlinear higher order impulsive differential equations   x(t)=f(t, x(t), x′(t), · · · , x(n−1)(t)), t ∈ [0, T ], t = tk, k = 1, · · · , p, ∆x(tk)= Ii,k(x(tk), x′(tk), · · · , x(n−1)(tk)), k = 1, · · · , p, i = 0, · · · , n− 1, x(i)(0)=−x(i)(T ), i = 0, · · · , n− 1. We obtain sufficient conditions for the existence...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 1

صفحات  301- 314

تاریخ انتشار 2017-06-12

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023